11 research outputs found

    Reconstructing continuous distributions of 3D protein structure from cryo-EM images

    Full text link
    Cryo-electron microscopy (cryo-EM) is a powerful technique for determining the structure of proteins and other macromolecular complexes at near-atomic resolution. In single particle cryo-EM, the central problem is to reconstruct the three-dimensional structure of a macromolecule from 104−710^{4-7} noisy and randomly oriented two-dimensional projections. However, the imaged protein complexes may exhibit structural variability, which complicates reconstruction and is typically addressed using discrete clustering approaches that fail to capture the full range of protein dynamics. Here, we introduce a novel method for cryo-EM reconstruction that extends naturally to modeling continuous generative factors of structural heterogeneity. This method encodes structures in Fourier space using coordinate-based deep neural networks, and trains these networks from unlabeled 2D cryo-EM images by combining exact inference over image orientation with variational inference for structural heterogeneity. We demonstrate that the proposed method, termed cryoDRGN, can perform ab initio reconstruction of 3D protein complexes from simulated and real 2D cryo-EM image data. To our knowledge, cryoDRGN is the first neural network-based approach for cryo-EM reconstruction and the first end-to-end method for directly reconstructing continuous ensembles of protein structures from cryo-EM images

    Machine learning for understanding protein sequence and structure

    No full text
    Thesis: Ph. D., Massachusetts Institute of Technology, Computational and Systems Biology Program, February, 2020Cataloged from student-submitted PDF of thesis.Includes bibliographical references (pages 183-200).Proteins are the fundamental building blocks of life, carrying out a vast array of functions at the molecular level. Understanding these molecular machines has been a core problem in biology for decades. Recent advances in cryo-electron microscopy (cryoEM) has enabled high resolution experimental measurement of proteins in their native states. However, this technology remains expensive and low throughput. At the same time, ever growing protein databases offer new opportunities for understanding the diversity of natural proteins and for linking sequence to structure and function. This thesis introduces a variety of machine learning methods for accelerating protein structure determination by cryoEM and for learning from large protein databases. We first consider the problem of protein identification in the large images collected in cryoEM. We propose a positive-unlabeled learning framework that enables high accuracy particle detection with few labeled data points, both improving data quality and analysis speed. Next, we develop a deep denoising model for cryo-electron micrographs. By learning the denoising model from large amounts of real cryoEM data, we are able to capture the noise generation process and accurately denoise micrographs, improving the ability of experamentalists to examine and interpret their data. We then introduce a neural network model for understanding continuous variability in proteins in cryoEM data by explicitly disentangling variation of interest (structure) for nuisance variation due to rotation and translation. Finally, we move beyond cryoEM and propose a method for learning vector embeddings of proteins using information from structure and sequence. Many of the machine learning methods developed here are general purpose and can be applied to other data domains.by Tristan Bepler.Ph. D.Ph.D. Massachusetts Institute of Technology, Computational and Systems Biology Progra

    Learning the protein language: Evolution, structure, and function

    No full text

    Topaz-Denoise: general deep denoising models for cryoEM and cryoET

    No full text
    The low signal-to-noise ratio (SNR) in cryoEM images can make the first steps in cryoEM structure determination challenging, particularly for non-globular and small proteins. Here, the authors present Topaz-Denoise, a deep learning based method for micrograph denoising that significantly increases the SNR of cryoEM images and cryoET tomograms, which helps to accelerate the cryoEM pipeline

    CryoDRGN: reconstruction of heterogeneous cryo-EM structures using neural networks

    No full text
    © 2021, The Author(s), under exclusive licence to Springer Nature America, Inc. Cryo-electron microscopy (cryo-EM) single-particle analysis has proven powerful in determining the structures of rigid macromolecules. However, many imaged protein complexes exhibit conformational and compositional heterogeneity that poses a major challenge to existing three-dimensional reconstruction methods. Here, we present cryoDRGN, an algorithm that leverages the representation power of deep neural networks to directly reconstruct continuous distributions of 3D density maps and map per-particle heterogeneity of single-particle cryo-EM datasets. Using cryoDRGN, we uncovered residual heterogeneity in high-resolution datasets of the 80S ribosome and the RAG complex, revealed a new structural state of the assembling 50S ribosome, and visualized large-scale continuous motions of a spliceosome complex. CryoDRGN contains interactive tools to visualize a dataset’s distribution of per-particle variability, generate density maps for exploratory analysis, extract particle subsets for use with other tools and generate trajectories to visualize molecular motions. CryoDRGN is open-source software freely available at http://cryodrgn.csail.mit.edu

    Positive-unlabeled convolutional neural networks for particle picking in cryo-electron micrographs

    No full text
    © 2019, The Author(s), under exclusive licence to Springer Nature America, Inc. Cryo-electron microscopy is a popular method for the determination of protein structures; however, identifying a sufficient number of particles for analysis can take months of manual effort. Current computational approaches find many false positives and require ad hoc postprocessing, especially for unusually shaped particles. To address these shortcomings, we develop Topaz, an efficient and accurate particle-picking pipeline using neural networks trained with a general-purpose positive-unlabeled learning method. This framework enables particle detection models to be trained with few sparsely labeled particles and no labeled negatives. Topaz retrieves many more real particles than conventional picking methods while maintaining low false-positive rates, is capable of picking challenging unusually shaped proteins (for example, small, non-globular and asymmetric particles), produces more representative particle sets and does not require post hoc curation. We demonstrate the performance of Topaz on two difficult datasets and three conventional datasets. Topaz is modular, standalone, free and open source (http://topaz.csail.mit.edu)
    corecore